Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.18.388934

ABSTRACT

The SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD expresses inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) expresses markedly more efficiently, and generates a more potent neutralizing responses as a DNA vaccine antigen, than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers such as an H. pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.10.036418

ABSTRACT

The SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates entry of SARS-CoV-2 into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. Antibodies to the RBD domain of SARS-CoV (SARS-CoV-1), a closely related coronavirus which emerged in 2002-2003, have been shown to potently neutralize SARS-CoV-1 S-protein-mediated entry, and the presence of anti-RBD antibodies correlates with neutralization in SARS-CoV-2 convalescent sera. Here we show that immunization with the SARS-CoV-2 RBD elicits a robust neutralizing antibody response in rodents, comparable to 100 {micro}g/ml of ACE2-Ig, a potent SARS-CoV-2 entry inhibitor. Importantly, anti-sera from immunized animals did not mediate antibody-dependent enhancement (ADE) of S-protein-mediated entry under conditions in which Zika virus ADE was readily observed. These data suggest that an RBD-based vaccine for SARS-CoV-2 could be safe and effective.


Subject(s)
Coronavirus Infections , Dystonic Disorders
SELECTION OF CITATIONS
SEARCH DETAIL